WO₃/Cd₂SnO₄的制备及其光催化分解水析氧活性

赵学国, 黄祖志, 李小红

(景德镇陶瓷学院材料科学与工程学院, 江西 景德镇 333001)

摘要: 采用固相反应法合成出尖晶石结构的Cd₂SnO₄,进而在Cd₂SnO₄粉体颗粒表面附着WO₃,制成WO₃/Cd₂SnO₄异质结光催化剂。借助X射线衍射仪、扫描电子显微镜、紫外-可见(UV-Vis)分光光度计等对催化剂粉体进行了表征。在可见光模拟系统中以碘酸钾为电子捕获剂,检测氧气生成速率表征催化剂的光催化性能。结果表明:WO₃附着在Cd₂SnO₄颗粒表面有利于光生电子的转移和光解水析氧反应。WO₃/Cd₂SnO₄催化剂较之纯Cd₂SnO₄催化剂活性显著提高。当WO₃附着量为 2.3%(质量分数)时,2.3%WO₃/Cd₂SnO₄光 μ⁺ 析氧速率可稳定在 200 μmol/(g·h)。

关键词: 锡酸镉; 光催化剂; 异质结; 光解水; 析氧速率 中图分类号: O644 文献标志码: A **文章编号:** 0454-5648(2015)01-XXXX-06 网络出版时间: 网络出版地址:

Preparation of WO₃/Cd₂SnO₄ and Its Photocatalytic Activity of Water-splitting for

Oxygen Evoluti vn

ZHAO Xueguo AUAN Zuzi, LI Xiaohong

(Jingdezhen Ceramic Institute, School of Materials Science and Technology, Jingdezhen 333001, Jiangxi, China)

Abstract: Cd_2SnO_4 powder with a spinel structure $v \in sv_{at}$ esized by a solid-state method. WO₃ nanoparticles as heterogeneous nanoparticles were loaded on $J Cd_2snO_3$ particle surface to form WO_3/Cd_2SnO_4 heterojunction photocatalyst. The WO_3/Cd_2SnO_4 phot c tai, c. was characterized by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometry, respectively. The photocatalytic activity of the WO_3/Cd_2SnO_4 heterojunction was performed *via* the O_2 evolution performance under simulated UV–Vis irradiation when KIO₃ was used as a sacrificial agent. The esults 1 ow that the photocatalytic activity of the WO_3/Cd_2SnO_4 heterojunction was superior to that of pure d_2 , nO_4 and WO_3 nanoparticles loaded on Cd_2SnO_4 particle surface can improve the interfacial electron transfer and the O_2 evolution. The stable average oxygen evolution rate is 200 μ mol/(g·h) when the amount of $lo_2 de'$ $V C_{J_3}$ is 2.3% (in mass fraction).

Key words: admiur. a stanate; photocatalysts; heterojunction; photolysis of water; oxygen evolution rate

近年来,环境问题成为一个日益严重的社会性问题,大量有毒气体和粉尘随意排放到空 一水中,给人赖以生存的大气和水源造成了极大的污染。为了解决环境问题,研究者以太 阳辐射能作为研究对象,采用光伏原理将太阳能转化为人们所需要的电能^[1-2]。光催化反应是 太阳能利用方法之一,它以太阳光作为能量来源,在室温下通过模拟植物光合作用把水分解 为氢气和氧气,产生的氢气可作为燃料代替传统的化石燃料^[3],而产生的氧气可有效地把水中 的有害有机物氧化降解^[4-5]。理解光催化反应原理及过程并设计出高效的光催化剂显得尤为重

收稿日期: 2014-04-20。 **修订**日期: 2014-07-17。 基金项目: 景德镇陶瓷学院博士启动项目。 第一作者: 赵学国(1976—), 男,高级工程师。 Received date: 2014-04-20. Revised date: 2014-07-17. First author: ZHAO Xueguo (1976–), male, Senior Engineer. E-mail: zhaoxueguo601@163.com

要。

Cd₂SnO₄半导体材料具有较高的导电率^[4],且能隙较窄(<3eV),可应用光催化系统^[6]。但研 究表明^[7],纯的Cd₂SnO₄催化剂光催化析氧活性较低。半导体复合是提高光催化反应效率的有 效手段,可以使光生载流子在不同能级半导体之间转移,能有效提高量子效率^[8]。为提高 Cd₂SnO₄催化剂光解水的能力,本文在采用固相反应法先合成出Cd₂SnO₄粉体基础上,考虑到 WO3具有很高的价带电位(0.5eV)和合适的禁带宽度(2.7eV)^[9],将WO3附载在Cd2SnO4催化剂 表面,并在可见光模拟系统中研究了附载的WO3对Cd2SnO4催化剂光解水析氧性能的影响。

1 实 验

1.1 样品制备

实验所用试剂为分析纯的锡酸钠、乙酸镉和钨酸钠,实验用水为去离子水。

以锡酸钠、乙酸镉等为原料,通过固相反应法合成出WO₃/Cd₂SnO₄。将一定量的锡附₇ 和乙酸镉溶入水,两溶液混合后使n(Cd²⁺):n(Sn⁴⁺)=5~6(摩尔比),再加入适量氢氧化内溶液,使 未反应完全的Cd²⁺全部转变为Cd(OH)₂沉淀,将反应沉淀物过滤并反复用水清洗后,移置马弗 炉内于 1000℃煅烧并保温 3h, 制得CdO/Cd₂SnO₄粉体。再用一定量的稀盐酸溶去C 1O可制备 出黄色、纯的Cd₂SnO₄催化剂粉体。将一定量的Na₂WO₄溶入水中,然后几入少量盐酸,形成 钨酸溶胶,再采用浸渍法将钨酸吸附在Cd₂SnO₄颗粒表面,过滤后形以等酸与Cd₂SnO₄复合粉 体。将该粉体放入马弗炉中于 600℃下焙烧,即可制备出WO3/Cdolato34复合催化剂粉体。

1.2 样品表征

采用日本理学DMAX-RB X射线粉末衍射仪分析样品"小石结构, Cu Ka辐射, 靶电压为 40 kV, 电流为 40 mA, λ=0.154 18 nm, 石墨单色器疗波, 气喘范围 2θ=10°~70°, 扫描速率为 0.02(°)/s。粉末样品压片后进行衍射分析,采用闪烁计数器控测衍射线强度。采用日本电子 JSM25900 型扫描电子显微镜观察样品粉末形貌。号日本JEM-2010 型透射电子显微镜观察样 品颗粒形貌, 阴极为LaB₆, 加速电压为 20.1 V. 采用Nicolet 7000-C型Fourier红外光谱仪(波数 为4000~400 cm⁻¹,分辨率为4 cm⁻¹)对样品 +行结构分析,试样采用高纯KBr与粉末样品压片 进行红外光谱测试。采用气相色谱(、CC-950型,上海海欣色谱仪器有限公司)进行催化剂活 性测试。禁带宽度测试采用Lamda : 20 紫外-可见(UV-Vis)近红外分光光度计测试样品的禁带宽 度。

1.3 样品催化活性表征

使用内置型光源(?5小/ 氙灯)光反应器, 气体闭合回路系统(氮气做载气) 测试样品的光 催化活性。实验中用1 催化剂,反应液为 600mL去离子水和 0.30g的KIO₃,在磁力搅拌下,采 用气相色谱对朴素量进行检测。

结果与讨论 2

2.1 物相点肉分析

图 1 内纯Cd₂SnO₄和含有不同质量分数WO₃的WO₃/Cd₂SnO₄的XRD谱。 从图 1 中可以 至山、 从锡酸钠和乙酸镉为原料,采用固相反应法在 1000℃煅烧 3h合成的Cd₂SnO₄晶型完整, 其行射峰与标准卡片(JCPDS 80-1466)中立方相Cd2SnO4的(130), (200), (111)、(131)、(211)、 (221)、(241)和 (400)晶面衍射峰相一致。WO3的负载对Cd2SnO4的衍射峰位置没有影响,这可 能是WO3附着量较少的缘故。

图 1 纯 Cd_2SnO_4 和不同 WO_3 含量的 WO_3/Cd_2SnO_4 样品的XRD谱 Fig. 1 XRD patterns of pure Cd₂SnO₄ and WO₃/Cd₂SnO₄ with different mass fraction of WO₃

600.

2.2 颗粒形貌分析

图 2 为固相反应所制备 2.3% WO₃/Cd₂SnO₄粉体扫描电子显微镜(SEM)照片及其能谱图。 从图 2a中可观察到, 合成的Cd₂SnO₄粉体颗粒外形无规则、大公不均, 大颗粒尺寸可达到 3 μ m 左右。图 2b为图 2a微区成分分析的能谱图。从图 2. 5 ℃, 各元素的原子数分数分别为 x(Cd)=27.37%, x(Sn) = 14.45%, x(W)=0.95%, x(O) = 57.23%, 其中摩尔比 $n(Cd)/n(Sn) \approx 2$, 与 Cd₂SnO₄中n(Cd)/n(Sn)配比非常接近, 而且检测出,又换算为WO₃含量时, 与实际加入量也很 吻合。

图 3 为 2.3%WO₃/Cd₂SnO₄/粉体TEM显微照片及方框中颗粒边缘放大图。从图 3a可进一步清晰看出,固相法所合成的Cd₂SnO₄粉体颗粒非常不均匀,小颗粒在 100~500nm,大颗粒尺 寸可达到 1~2μm。对单个颗粒边缘进行放大(图 3b)后可观察到,有 10~20 nm左右的小颗粒附 着在Cd₂SnO₄颗粒表面上,结合实验过程及上述能谱分析结果,这些纳米粒子应为WO₃。

 (a) TEM
 (b) Enlarged figure of particle in box in Fig. 5 (a)

 图3 2.3%WO₃/Cd₂SnO₄粉体的TEM照片及其颗粒边缘照片

 Fig.3 TEM photograph of 2.3%WO₃/Cd₂SnO₄ powder and its particle fringe

2.3 Fourier 红外光谱和紫外可见光吸收光谱分析

图 4 为纯Cd₂SnO₄和 2.3%WO₃/Cd₂SnO₄粉体的Forr.c之口,(FTIR)光谱。从图 4 可以看出, 纯Cd₂SnO₄粉体的FTIR谱线中,位于 400~600 cm⁻¹呼收止之()—Sn—O分子振动吸收谱带^[10]; 2.3%WO₃/Cd₂SnO₄粉体的FTIR谱线中,位于 850 cn⁻¹左右的宽吸收峰为O—W—O的伸缩振动 峰^[11],表明 2.3%WO₃/Cd₂SnO₄样品中含有O—Sn— 示 O—W—O键。表明样品中有锡酸镉和氧 化钨,进一步确认了氧化钨附着在锡酸镉、T₁

Fig. 4 FTIR spectra of pure Cd_2SnO_4 and 2.3%% WO_3/Cd_2SnO_4 powders

图 5 为x%WO₃/Cd₂SnO₄(x=0, 1, 1.5, 2.3)粉体紫外-可见(UV-Vis)吸收光谱。从图 5a可以 看出:纯Cd₂SnO₄可见光吸收带位于 300~500 nm之间;当Cd₂SnO₄颗粒表面附着少量的WO₃ 后,催化剂粉体对 400~550nm之间可见光的吸收出现了明显增强现象,当 2.3%WO₃附载后, 催化剂粉体对 450nm可见光的吸收比例从 76%提高到 82%。在相同可见光照射下,增强的 WO₃/Cd₂SnO₄催化剂对可见光的吸收意味着可产生更多的电子空穴对,进而提高催化剂光解水的活性。此外,根据半导体的吸收系数 α 与光学带隙之间的关系式(αhv)²= $A(hv-E_g)$ 作图(其中: α 为吸收系数; h为Planck常数; v为光频率; A为常数; E_g 为禁带宽度;),如图 5b所示。由Cd₂SnO₄可见光吸收光谱的数据可计算出Cd₂SnO₄禁带宽度 E_g 为 2.3eV,这与文献所报道的结果相同^[5]。

2.4 催化活性表征

 $x\%WO_3/Cd_2SnO_4(x=0, 0.5, 1, 1.5)$ 催化剂光解水析氧性能受光照时间影响,其关系如图 6 所示。从图 6 可以看出,随着WO₃附载量的增多,WO₃/Cd₂SnO₄催化剂光解水析氧能力得到 显著的提高,纯Cd₂SnO₄催化剂光解水析氧速率约为 80 µmol/(g·h);附载 1%WO₃后, 1%WO₃/Cd₂SnO₄催化剂光解水析氧速率提高到 150µmol/(g·h);进一步增加附载WO₃量, 1.5%WO₃/Cd₂SnO₄催化剂光解水析氧速率增加变缓,但也达到 180µmol/(g·h);当WO₃附载 量达到 2.3% Fl 2.3% WO₃/Cd₂SnO₄催化剂光解水析氧速率增加进一步变缓,达到 200µmol/(g·h)。这点明附载WO₃能有效提高Cd₂SnO₄光催化剂活性。

图 6 x%WO₃/Cd₂SnO₄(x=0, 1, 1.5, 2.3)催化剂光解水析氧性能与光照时间关系

Fig. 6 Relationship between O_2 evolution performance of $x\%WO_3/Cd_2SnO_4(x=0, 1, 1.5, 2.3)$ and illumination time

根据文献[12] 可知,氧化物半导体带边电位强烈受禁带宽度的影响,其导带、价带电位 与禁带关系如下:

 E_{cb} (V vs NHE)=1.23- E_{g} (eV)/2, E_{vb} (V vs NHE)=1.23+ E_{g} (eV)/2, 其中 E_{cb} 、 E_{vb} 和 E_{g} 分别表示半导体的导带电位、价带电位及其禁带宽度, NHE(normal hydroge n electrode)表示标准氢电极。将 E_{vb} =2.3eV代入,可计算出Cd₂SnO₄的导带电位约为 0. 1eV, 价 带电位约为 2. 4eV,这与文献中所报道的结果非常接近^[5]。由于Cd₂SnO₄的价带电位远高于大吃 氧化电位,因此,Cd₂SnO₄具有一定的光解水析氧性能。图 7 为 UV-Vis光照射下WO₃/Cc₂SnO₄ 异质结催化剂电子转移示意图。

NHE-Normal hydrogen electrode; CB-Conduct > band of semiconductor; VB-Valence band of semiconductor; e⁻-Photoinduced electron; h⁺-Photoinduced hole.

图 7 UV-V小光照射下WO₃/Cd₂SnO₄异质结催化剂电子转移示意图

Fig. 7 Schematic diagram c. the charge transfer and separation in the WO_3/Cd_2SnO_4 photocatalyst under UV–Vis irradiation

从图 7 可じ着出 兰少量的WO₃附载于Cd₂SnO₄颗粒表面后,由于WO₃导带和价带电位 (*E*_{cb}=0.5eV; *E*_{vo}=3 ∠V)均比Cd₂SnO₄相应的带边电位高,光照后,Cd₂SnO₄半导体受激产生的 电子在电头作用下会迁移到WO₃导带之中,而WO₃受激产生的空穴也会跃迁到Cd₂SnO₄价带 之中,这样光生的载流子在Cd₂SnO₄与WO₃两相间相互分离,有效提高了催化剂的量子效率。 而呈聚集在WO₃表面的光生电子会为溶液中的KIO₃所捕获,抑制H₂的生成,避免了由光氧化 公家 又 业中产生的O₂和H₂复合,提高了Cd₂SnO₄光催化剂析氧活性。当继续增加WO₃的附载 量时,由于WO₃以极为细小的纳米粒子形式附着在半导体颗粒表面上,具有很大的表面积, 不但减小了半导体颗粒与可见光的接触表面,而且也减小了半导体颗粒与水的接触面积,此 时增加WO₃的附载量并不能快速提高半导体的光催化活性。

3 结 论

以锡酸钠和乙酸镉为原料,采用固相法制备出尖晶石型Cd₂SnO₄粉体,并在Cd₂SnO₄粉体频粒表面附着WO₃,制成WO₃/Cd₂SnO₄异质结光催化剂。WO₃附载量对Cd₂SnO₄光催化析

氧活性具有一定影响。

1)所制备的 Cd_2SnO_4 粉体禁带宽度为 2.3eV;

2)少量WO₃以纳米颗粒形式(10~20nm)附着在Cd₂SnO₄颗粒表面,在可见光模拟系统中WO₃能显著提高Cd₂SnO₄光催化析氧活性。

3)当WO₃附载量为 2.3%时, 2.3% WO₃/Cd₂SnO₄光解水析氧速率可达到 200µmol/(g·h)左右。

Ċ

参考文献:

[1] OOSTERHOUT Stefan D, WIENK Martijn M, van Bavel Svetlana S, et al. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells[J]. Nat Mater, 200 *v*. ^o. 818-824.

[2] ARICÒ Antonino Salvatore, BRUCE Peter, SCROSATI Bruno, et al., Nanostructure 1 materials for advanced energy conversion and storage devices[J]. Nat Mater, 2005, 4: 365-375.

[3] 李灿. 太阳能光催化制氢的科学机遇和挑战[J]. 光学与光电技术, 2013, 11(1): 1-6

LI Chan. Opt Optoelectron Technol (in Chinese), 2013, 11(1): 1-6.

[4] COUTTS T J, WU X, MULLIGAN W P, et al. High-performance, transparent conducting oxides based on cadmium stannate[J]. J Electron Mater, 1996, 25(6): 932-942.

[5] 李 焕,张青红,王宏志,等. 氧化铋/硅藻土复合光催化剂的制备及其可见光催化性能[J]. 硅酸盐学报,2013,41(4):567-574.

LI Huan, ZHANG Qinghong, WANG Hongzhi, et al. J Chin Carm Soc, 2013, 41(4): 567-574.

[6] HUANG X, LV J, LI Z, et al. Electronic structure and visible-light-driven photocatalytic performance of Cd_2SnO_4 [J]. J Alloy Compd, 2010, 5 ... 21: 541-344.

[7] HUANG Xianli, SHI Haifeng, LV Jup, e. : Photocatalytic O_2 evolution performances of $Cd_{1+x}In_{2-2x}Sn_xO_4$ (x=0.1, 0.3, 0.5, 0.7, 1.0) c. parting oxides [J]. J Phys Chem Solids, 2010, 71: 880-883.

[8] 施利毅, 古宏晨, 李春忠, 等. S O₂-FO₂复合光催化剂的制备和性能[J]. 催化学报, 1999, 20(3): 338-342.

[9] YOUNG Tae Kwon KANC Yong Song, WANG In Lee, et al., Photocatalytic behaviour of WO_3 -loaded TiO₂ in an O^{*} 10 tion Reaction[J]. J Catal, 2000, 198(1): 192-199.

[10] ZHANG Jia Long, GLO Lian. Synthesis and characterization of antimony-doped tin oxide (ATO) nanoparacles by a new hydrothermal method [J]. Mater Chem Phys, 2004, 87(1): 10-13.

[11] SALMAOUUS, JEDIRI F, GHARBIN N. Characterization of h-WO₃ nanorods synthesized by thermal, process ^[1]. J Polyhedron, 2010, 29(7): 1771-1775.

[1.7 MALU MOTO Y. Energy Positions of Oxide Semiconductors and Photocatalysis with Iron contract Oxides [J]. J Solid State Chem, 1996, 126: 227-234.