Vol. 44, No. 1 January, 2016

2016年1月

JOURNAL OF THE CHINESE CERAMIC SOCIETY

http://www.gxyb.cbpt.cnki.net

DOI: 10.14062/j.issn.0454-5648.2016.01.07

纳米伊/蒙黏土吸附脱除水中 Cu²⁺和 Cd²⁺离子

袁姗姗,黎振源,潘志东,王燕民

(华南理工大学材料科学与工程学院,广州 510640)

摘 要:探索经精细加工的纳米伊/蒙混层黏土吸附水中2种二价重金属离子(即Cu²⁺和Cd²⁺)的吸附性能,并考察了该黏土在 吸附过程中 pH 值、黏土用量、吸附时间、吸附温度和重金属离子浓度诸因素对水中 Cu²⁺和Cd²⁺离子吸附性能的影响。结果 表明:纳米伊/蒙黏土对水中重金属离子的吸附量随 pH 值的增加而增加,当 pH>4 时,吸附量基本趋于稳定;在优化条件下,纳米伊/蒙黏土对水中 Cu²⁺和 Cd²⁺的最大吸附脱除率分别为 95.15%和 91.53%。用准一级和准二级动力学模型拟合纳米伊/蒙 黏土吸附 Cu²⁺和 Cd²⁺的吸附动力学过程。结果表明,准二级动力学模型能够拟合纳米伊/蒙黏土对 Cu²⁺和 Cd²⁺的吸附过程。 吸附热力学研究还表明,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺属于物理吸附过程。另外,利用 Langmuir 和 Freundlich 等温线模型 分析纳米伊/蒙黏土分别吸附不同浓度 Cu²⁺和 Cd²⁺的吸附过程。Langmuir 模型能有效地拟合纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺ 的等温吸附过程,由其获得的单层纳米伊/蒙黏土对 Cu²⁺和 Cd²⁺饱和吸附量分别为 7.99 mg/g 和 12.68 mg/g。

关键词: 伊/蒙黏土; 纳米颗粒; 吸附; 重金属离子
 中图分类号: TQ424.2 文献标志码: A 文章编号: 0454-5648(2016)01-0043-07
 网络出版时间: 2015-12-23 17:19:59
 网络出版地址: http://www.cnki.net/kcms/detail/11.2310.TQ.20151223.1719.007.html

Removal of Copper and Cadmium Ions in Aqueous Solution *via* Adsorption by Nano-sized Illite-Smectite Clay

YUAN Shanshan, LI Zhenyuan, PAN Zhidong, WANG Yanmin

(School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract: The adsorption of copper (Cu^{2+}) and cadmium (Cd^{2+}) ions onto nano-sized illite/smectite (I/S) mixed-layer clay mineral in water was investigated. The nano-sized flat particles of I/S clay were obtained *via* purification, superfine grinding, drying, surface modification and dispersion. The adsorption of Cu^{2+} and Cd^{2+} ions onto the nano-sized I/S clay was examined at various parameters like pH value, concentration of nano-sized I/S clay, adsorption time, temperature, and concentration of heavy metal ions. The adsorption amount of heavy metal ions increases with the increase of pH value and is stable when pH > 4. The maximum adsorption efficiency of Cu^{2+} and Cd^{2+} ions under the optimal condition is 95.15% and 91.53%, respectively. The adsorption kinetic was discussed based on the pseudo-first-order and pseudo-second-order kinetic models, indicating that the adsorption process for the heavy metal ions follows the pseudo-second-order kinetic model. According to the thermodynamic analysis, the adsorption of Cu^{2+} and Cd^{2+} ions onto nano-sized I/S clay in water is a physical process. The adsorption process follows the Langmuir isotherm model. The Langmuir monolayer maximum adsorption capacities of nano-sized I/S clay for Cu^{2+} and Cd^{2+} ions are 7.99 mg/g and 12.68 mg/g, respectively.

Keywords: illite/smectite clay; nano-particle; adsorption; heavy metal ions

现代工业带来便利的同时也向环境中排放了工 业废水,这其中含有铜、镉、铅、锌等重金属离子。

水中的重金属离子无法被微生物分解,会在生物体 内富集或者形成毒性更强的化合物,进而通过

Received date: 2015–08–26. **Revised date:** 2015–10–20.

收稿日期: 2015-08-26。 修订日期: 2015-10-20。

基金项目:中央高校基本科研业务费专项资金(2015ZM102)资助项目。

第一作者: 袁姗姗(1989—),女,硕士研究生。

通信作者: 王燕民(1956—), 男, 博士, 教授, 博士研究生导师。

First author: YUAN Shanshan (1989–), female, Master candidate. E-mail: 270522259@qq.com

Correspondent author: WANG Yanmin (1956–), male, Ph.D., Professor. E-mail: wangym@scut.edu.cn

食物链最终危害人体的健康^[1,2]。Cu²⁺在人体内的 积累会导致大脑、皮肤、胰腺和心脏的损伤^[3]。长 期摄入含有Cd²⁺离子的食物会严重影响人体的肾功 能,导致肾小管的回收功能减退,造成体内蛋白质 代谢的紊乱,使尿液中含大量的低分子量蛋白质^[4]。 黏土矿物廉价易得,化学稳定性好,常被应用于吸 附处理水中重金属离子,如改性蒙脱土^[4]、纳米碳 管-高岭土复合材料^[5]、膨润土^[6]、铁基膨润土^[7]、 改性高岭土^[8]、伊利石^[9]和伊利石/高岭石混层黏 +^[10]等。

产于广西防城港地区的伊/蒙混层黏土矿物具 有储量大、储层厚、颗粒微细等特点。通常,伊/ 蒙混层黏土被认为是伊利石和蒙脱石两种微晶的混 合矿物^[11],是蒙脱石矿物在成岩作用下向伊利石转 化(即,蒙脱石的伊利石化)过程中的一种过渡矿物 类型^[12-13],与伊利石和蒙脱石一样,属于典型的层 状硅酸盐矿物。因此,它具有伊利石和蒙脱石的双 重特性^[14]。然而将此种黏土作为吸附剂对重金属离 子进行无害化处理的相关研究极少。

本文探索这种经精细加工后的纳米伊/蒙混层 黏土应用于吸附去除水中的Cu²⁺和Cd²⁺离子试验工 作。并探究了 pH 值、黏土用量、吸附时间、吸附 温度和重金属离子浓度等诸因素对水中重金属离子 吸附性能的影响。另外,还探讨了吸附过程中的动 力学、热力学和等温吸附过程。

1 实验

1.1 纳米伊/蒙黏土的制备

产自广西的伊/蒙混层黏土原矿经过浸泡、捣 浆、分散、过筛、提纯后制成料浆,随后用高能量 密度介质搅拌磨(FPML OML-H/V, Buhler Group Co., Switzerland)超细研磨剥片 2 h。纳米伊/蒙黏土料浆 经过共沸蒸馏法干燥,用高速粉碎分散机进行有效 的表面改性和机械分散。制备的纳米粒级伊/蒙黏土 密封后置于硅胶干燥器中备用。X 射线荧光光谱仪 (Spectro Analytic Instruments GMBH, Germany)测试 结果表明,伊/蒙混层黏土的主要化学成分为20.05% Al₂O₃、70.63% SiO₂、1.49% MgO、2.63% K₂O 和 0.06% Fe₂O₃。由伊/蒙黏土(I/S)样品的 XRD 谱可知 (见图 1),在 20为 6°~8°之间的特征衍射峰表明, 此黏土矿物为伊/蒙混层矿物[15]。纳米伊/蒙黏土微 观形貌表明, 经介质搅拌磨超细研磨剥片后, 伊/ 蒙黏土呈层片状而且分散性良好(见图 2),是一种二 维纳米材料。其比表面积为 49.53 m²/g。

图 2 纳米伊/蒙黏土的 SEM 照片 Fig. 2 SEM image of nanoparticles of I/S clay

1.2 吸附实验

实验使用的玻璃器皿经 0.1 mol/L HNO3 溶液浸 泡 12h 后,用去离子水冲洗数次,烘干备用。浓度 为2000 mg/L的Cu²⁺和Cd²⁺离子基础溶液分别由分 析纯的 Cu(NO₃)₂·3H₂O 和 Cd(NO₃)₂·4H₂O 配制。实 验中不同浓度的重金属离子溶液均从基础溶液中 稀释。在溶液 pH 值对吸附量影响的实验中,使用 1 mol/L HCl 溶液调节重金属离子溶液 pH 值。在吸附 剂用量影响重金属离子吸附量系列实验中, 纳米黏 土的添加量从 5g/L 逐渐增加到 30g/L。在吸附动力 学实验中,可调节吸附时间范围为 1~120 min。在 等温吸附实验中,重金属离子的浓度可调范围为 40~280 mg/L。具体实验步骤为:取 100 mL 重金属 离子溶液置于 250 mL 的烧杯中, 加入含适量的纳米 伊/蒙黏土,在313K恒温水浴锅中以400r/min的转 速搅拌到设定的时间后,用离心机以 5000 r/min 的 转速离心分离 5 min。每组实验重复 3 次, 取测试结 果的平均值。单位质量的纳米伊/蒙黏土对重金属离 子的吸附量 $q_e(mg/g)$ 及重金属离子脱除率 R(%)分别 采用如下公式计算:

$$q_{\rm e} = \frac{(c_0 - c_{\rm e})V}{m_{\rm s}}$$
(1)

$$R = \frac{c_0 - c_e}{c_0} \times 100\%$$
 (2)

式中, $c_0 \approx c_e$ 分别为初始重金属离子浓度和吸附反应后重金属离子浓度; $V \approx m_s$ 分别为金属离子溶液的体积和吸附剂的质量。

1.3 吸附动力学和吸附等温线模型

准一级和准二级动力学模型^[16]方程可用来评 估吸附剂吸附量与吸附时间之间的关系。准一级动 力学方程和准二级动力学方程如下:

$$\ln(q_{\rm e} - q_t) = \ln q_{\rm e} - k_1 t \tag{3}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e} + \frac{t}{q_e} \tag{4}$$

式中, $k_1 \approx k_2$ 分别是准一级和准二级动力学模型中的吸附速率常数; q_t 为吸附时间为t时,单位质量纳米伊/蒙黏土对重金属离子的吸附量。

Langmuir 和 Freundlich 等温线模型^[17],用于评 价吸附剂的吸附机制。Langmuir 和 Freundlich 等温 线模型方程如下

$$\frac{c_{\rm e}}{q_{\rm e}} = \frac{c_{\rm e}}{q_{\rm max}} + \frac{q}{bq_{\rm max}} \tag{5}$$

$$R_{\rm L} = 1/(1 + bc_0)$$
 (6)

$$\ln q_{\rm e} = \ln K_{\rm f} + \frac{1}{n} \ln c_{\rm e} \tag{7}$$

式中, q_{max} 为最大单层吸附量; b为 Langmuir 常数; R_{L} 为吸附强度; K_{f} 和 1/n为 Freundlich 常数。

1.4 表征

采用 X-Pert pro 型 X 射线衍射仪(PANalytical Co., the Netherlands)测定样品的物相。用 EVO-18 型 扫描电子显微镜(Carl-Zeiss Co., Ltd., Germany)观察 样品的颗粒形貌。样品比表面积和 Zeta 电位分别由 Flow Sorb II 型 N₂ 吸附比表面仪(Micromertics Instrument Co., USA)和上海中晨数字技术设备有限 公司 JS94J2 型电泳仪测试得到。采用 Contra AA700 型连续光源原子吸收光谱仪(AnalytikJena AG, Germany)检测溶液中重金属离子的浓度。

2 结果与讨论

2.1 pH 值的影响

图 3 为溶液 pH 值对 Cu²⁺、Cd²⁺离子吸附量和

Zeta 电位的影响。从图 3 可以看出,当溶液 pH 值 低于 2 时,纳米伊/蒙黏土对 Cu²⁺和 Cd²⁺离子的吸附 量(q_e)接近于 0。当 pH 值从 2 增大到 4 时,纳米伊/ 蒙黏土对重金属离子的吸附量急剧增大,Cu²⁺离子 吸附量从 0.31 mg/g 增加至 6.99 mg/g,Cd²⁺离子吸附 量从 0.13 mg/g 增加至 8.11 mg/g。当 4<pH<7 时, q_e 的变化幅度不大,趋于稳定。电动电位的分析结果表 明,当 pH 值从 2 增大到 7 时,Zeta 电位由 3.29 mV 变为-69.95 mV,纳米伊/蒙黏土表面电荷由正变为 负。这可能是随着 pH 值升高纳米伊/蒙黏土表面去 质子化,表面净负电荷增加。pH 值较小时(pH 值<2), H⁺与重金属离子形成了竞争吸附,导致重金属离子 吸附量低。随着 pH 值升高,纳米伊/蒙黏土表面去 质子化,静负电荷量增加,对重金属离子吸附能力 增强,因而 Cu²⁺和 Cd²⁺离子的吸附量增加。

2.2 纳米伊/蒙黏土添加量的影响

图4为纳米伊/蒙黏土添加量对Cu²⁺和Cd²⁺离子 吸附量的影响。当黏土添加量从5g/L 增至20g/L 时,Cu²⁺离子的吸附脱除率从40.43%增至95.15%, Cd²⁺离子吸附脱除率从47.63%增加到91.53%。当黏 土添加量超过20g/L 时,Cu²⁺和Cd²⁺离子吸附去除 率随黏土添加量增加的效果不明显。然而单位质量 纳米黏土对Cu²⁺和Cd²⁺的吸附量(q_e)下降,Cu²⁺离 子的q_e从7.81 mg/g 降至3.17 mg/g,Cd²⁺离子的q_e 则是从9.53 mg/g 降至3.05 mg/g。这可能是溶液中 重金属离子浓度一定时,吸附剂的增加导致单位质 量黏土的未吸附饱和位点增加;另外,随着吸附剂 添加量增多,吸附剂颗粒在水中发生聚集,减少了吸 附剂的总面积和增加了重金属离子在黏土中的扩散 路径,因而单位质量纳米伊/蒙黏土吸附量降低^[18]。

(b) Adsorption for Cd2+ ions

- 图 4 纳米伊/蒙黏土含量对水中 Cu²⁺和 Cd²⁺离子的吸附性 能的影响
- Fig. 4 Effect of I/S clay concentration on the adsorption performance for Cu²⁺ and Cd²⁺ ions in water

2.3 吸附时间的影响及吸附动力学

图 5 为 Cu²⁺和 Cd²⁺离子吸附量随时间的变化曲 线。在吸附开始的 10 min 内,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的吸附量增加较快。吸附时间超过 30 min 后,两种重金属离子的吸附量基本不变,分 别稳定在 6.95 mg/g 和 10.61 mg/g 左右。因此,实验 条件下,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的吸附 平衡在吸附开始后 30 min 左右达到。

图 5 吸附时间对纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子量的 影响(点为实验结果;线为准二级模型拟合的曲线)

Fig. 5 Effect of adsorption time on the adsorption amount (q_e) of heavy metal ions (Dots – Experimental results; Theoretical curves—Predicted by Pseudo-second-order model)

另外,准一级和准二级动力学模型分析和模拟 结果如表 1 所示。准一级动力学模型预测纳米伊/ 蒙黏土吸附 Cu²⁺和 Cd²⁺离子的吸附量 *q*e 分别是 1.284 mg/g 和 3.321 mg/g,与实验结果相差甚远。因 此,准一级动力模型不适合拟合本实验的数据。而准 二级动力学模型预测的单位吸附量分别是 7.005 mg/g 和 10.73 mg/g,接近于吸附实验结果,并且拟合结 果的相关系数均大于 0.99。准二级动力学模型的拟 合曲线与纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的实 验结果吻合(见图 5),准二级动力学模型能够用于拟 合纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的吸附过程。 相似的结果在采用其他类型的黏土矿物吸附重金属 离子的动力学过程中亦可得到^[3,19]。

表 1 实验结果和准一级、准二级动力学模型拟合数据 Table 1 The experimental results and predicted data by pseudo-first-order and pseudo-second-order kinetic models

Heavy mental ions	Predicted data by pseudo-first-order kinetic models			Predicted data by pseudo-second-order kinetic models			The experimental results data
	k_1/\min^{-1}	$q_{e'}(\mathrm{mg}\cdot\mathrm{g}^{-\mathrm{l}})$	R^2	$k_2/(g \cdot mg^{-1} \cdot min^{-1})$	$q_{\rm e}/({\rm mg}\cdot{\rm g}^{-1})$	R^2	$q_{\rm e}/({\rm mg}\cdot{\rm g}^{-1})$
Cu ²⁺	0.1473	1.284	0.9122	0.2012	7.005	0.9998	6.95
Cd^{2+}	0.1281	3.321	0.9326	0.1136	10.73	0.9999	10.61

 k_1, k_2 —Adsorption rate constant; q_e —Adsorption amount of metal ions onto per unit mass of the adsorbent; R^2 —correlation coefficient.

(8)

2.4 吸附温度的影响及热力学过程

Gibbs 自由能(ΔG)、熵变(ΔH)、焓变(ΔS)热力学 参数由如下方程计算^[20]:

$$\Delta G = -RT \ln K_{\rm d}$$

$$\ln K_{\rm d} = \frac{\Delta S}{R} - \frac{\Delta H}{RT} \tag{9}$$

式中: R 为气体常数; K_d(K_d = q_e/c_e)为分配系数。 设定影响纳米伊/蒙黏土单位吸附量的温度区间 为 283~323 K, Cu²⁺和 Cd²⁺离子浓度分别为 100 mg/L 和 200 mg/L,吸附时间为 120 min。图 6 为纳米伊/ 蒙黏土吸附 Cu²⁺和 Cd²⁺离子的 lnK_d-1/T 图。表 2 为 Cu²⁺和 Cd²⁺离子在纳米伊/蒙黏土上吸附的热力学 参数。

从图 6 和表 2 可见,当吸附温度从 283 K 上升 到 323 K 时,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子 的 Gibbs 自由能(ΔG)分别从-1.35 kJ/mol 上升至 -2.85 kJ/mol 和从-0.15 kJ/mol 上升至-0.89 kJ/mol。 由于 ΔG 皆为负值,纳米伊/蒙黏土吸附水中 Cu²⁺ 和 Cd²⁺离子为自发的过程。同时,因为 $\Delta H>0$, 纳米伊/蒙黏土吸附水中 Cu²⁺和 Cd²⁺离子为吸热 过程^[21]。此外,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离 子的熵变 ΔH 分别为 8.32 kJ/mol 和 5.47 kJ/mol,均 小于 16 kJ/mol,因此,可以认为纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的吸附机制为物理吸附^[21]。

2.5 重金属离子浓度的影响及等温吸附线

图 7 为 Cu²⁺和 Cd²⁺离子吸附量随初始离子浓度 变化的曲线。由图 7 可见,当 Cu²⁺和 Cd²⁺离子初始 浓度由 40 mg/L 分别上升至 200 mg/L 和 280 mg/L 时,纳米伊/蒙黏土对 Cu²⁺和 Cd²⁺吸附量随着初始离 子浓度的升高而上升,但相应的吸附效率分别由 94.11%降低到 32.42%和由 90.75%降至 48.21%。这可 能是随着初始离子浓度的增加,吸附剂表面活性吸附 位点逐渐趋于吸附饱和,导致吸附效率降低^[22]。

图 6 纳米伊/蒙黏土吸附 Cu^{2+} 和 Cd^{2+} 离子的 $lnK_{d}-1/T$ 图 Fig. 6 Plot of lnK_{d} vs 1/T for adsorption of Cu^{2+} and Cd^{2+} ions

表 2 纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的热力学参数 Table 2 Thermodynamic parameters of adsorption of Cu2+ and Cd²⁺ ions onto nano-sized I/S clay

Heavy	$\Delta H/$	$\Delta S/$	$\Delta G/(\mathrm{kJ}\cdot\mathrm{mol}^{-1})$				
metal ions	$(kJ \cdot mol^{-1})$	$(J/mol^{-1} \cdot K^{-1})$	283 K	293 K	303 K	313 K	323 K
Cu ²⁺	8.32	34.73	-1.51	-2.02	-2.13	-2.58	-2.86
Cd^{2+}	5.47	19.50	-0.15	-0.24	-0.38	-0.58	-0.89

 ΔG —Gibbs free energy; ΔH —Enthalpy change; ΔS —Entropy change:

Langmuir等温吸附模型假定吸附发生在表面而 实 且是单层吸附^[23]。由表 3 可知, Langmuir等温吸附 相 模型计算得到纳米伊/蒙黏土对 Cu²⁺和 Cd²⁺离子与 温

实验结果相近。Langmuir 等温吸附模型拟合结果的 相关系数 R²值均在 0.99 以上,这表明 Langmuir 等 温吸附模型可有效地拟合实验数据。由 Langmuir

等温线模型得到的拟合值与实验数据吻合(见图 8)。

表 3 纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的 Langmuir 和 Freundlich 等温吸附模型拟合参数

Table 3Parameters calculated by Langmuir and
Freundlich isotherm models for adsorption of
Cu2+ and Cd2+ ions onto nano-sized I/S clay

Heavy	Langmuir isotherm model			Freundlich isotherm model		
metal	$q_{ m max}$	<i>b</i> /	R^2	$K_{\rm f}$	1/n	R^2
ions	$(mg \cdot g^{-l})$	$(L \cdot mg^{-1})$		$(mg \cdot g^{-1})$		
Cu ²⁺	7.99	0.19	0.9992	3.51	0.17	0.9566
Cd^{2+}	12.68	0.10	0.9980	3.24	0.28	0.8928

 q_{max} —Maximum monolayer capacity of adsorbate; *b*—Langmuir isotherm constant; *K*_f and 1/*n*—Freundlich isotherm constant which indicate the capacity and intensity of the adsorption, respectively.

Fig. 8 Comparison of equilibrium isotherms between the experimental results and predicted data for adsorption of Cu^{2+} and Cd^{2+} ions

同时,根据无量纲参数 R_L (见式 6)的数值大小,吸附强度有 4 种可能。即,有利吸附($0 < R_L < 1$),不利 的吸附($R_L > 1$),线性吸附($R_L = 1$)和不可逆吸附($R_L = 0$)。 当初始重金属离子浓度范围为 40~280 mg/L 时,纳米伊/蒙黏土吸附 Cu²⁺和 Cd²⁺离子的 R_L 的值在 0.20 和 0.022 之间(见图 9),均小于 1,这表明实验 条件有利于吸附的进行。由于 *R*_L 值随着初始重金属 离子浓度的增加而降低,在更高的重金属离子浓度 时,其吸附过程会逐渐趋近于不可逆(*R*_L=0)。虽然 Freundlich 等温线模型拟合结果也具有相对较高的 相关系数(即 0.95 和 0.89),但是低于用 Langmuir 等 温线模型所获得的相关系数。另外,Langmuir 等温 线的拟合值与实验数据的契合度高于 Freundlich 等 温线(见图 8),这表明 Langmuir 等温吸附模型可有 效地描述其吸附过程。

3 结论

纳米伊/蒙混层黏土可有效地吸附脱除水中的 Cu²⁺和 Cd²⁺离子,在优化条件下,其优化吸附脱除 率分别为 95.15%和 91.53%。吸附过程受溶液初始 pH 值、吸附剂用量、吸附时间、吸附温度和重金属 离子初始浓度等因素影响。纳米伊/蒙黏土对 Cu²⁺ 和 Cd²⁺离子的吸附量在溶液初始 pH 值大于 4 时趋 于稳定;单位黏土吸附量会随着黏土用量的增加而 减少。吸附动力学实验结果表明,Cu²⁺和 Cd²⁺离子 在纳米伊/蒙黏土的吸附符合准二级吸附速率模型。 在热力学研究表明,纳米伊蒙黏土吸附 Cu²⁺和 Cd²⁺ 离子的熵变(ΔH)分别为 8.32 kJ/mol 和 5.47 kJ/mol,为 物理吸附过程。吸附过程的等温线数据符合 Langmuir 等温线模型,其获得的单层纳米伊/蒙黏土对水中 Cu²⁺和 Cd²⁺离子的饱和吸附量分别为 7.99 mg/g 和 12.68 mg/g。

参考文献:

 AN H K, PARK B Y, KIM D S. Crab shell for the removal of heavy metals from aqueous solution [J]. Water Res, 2001, 35: 3551–3556.

- [2] JIANG M, JIN X, LU X, et al. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay [J]. Desalination, 2010, 252: 33–39.
- [3] TURAN N G, ELEVLI S, MESCI B. Adsorption of copper and zinc ions on illite: Determination of the optimal conditions by the statistical design of experiments [J]. Appl Clay Sci, 2011, 52: 392–399.
- [4] HUANG Ruihua, WANG Bo, YANG Bingchao, et al. Equilibrium, kinetic and thermodynamic studies of adsorption of Cd(II) from aqueous solution onto HACC-bentonite [J]. Desalination, 2011, 280: 297–304.
- [5] UNUABONAH E I, ADEBOWALE K O, OLU-OWOLABI B, et al. Adsorption of Pb(II) and Cd(II) from aqueous solutions onto sodium tetraborate-modified Kaolinite clay: Equilibrium and thermodynamic studies [J]. Hydrometallugy, 2008, 93: 1–9.
- [6] 曹晓强,张燕,邱俊,等. 膨润土对溶液中镍离子的吸附特性及机理[J]. 硅酸盐学报, 2014, 42(11): 1448–1454.
 CAO Xiaoqiang, ZHANG Yan, QIU Jun, et al. J Chin Ceram Soc, 2014, 42(11): 1448–1454.
- [7] MARCO-BROWN J L, BARBOSA-LEMA C M, TORRE SANCHEZ R M, et al. Adsorption of picloram herbicide on iron oxide pillared montmorillonite [J]. Appl Clay Sci, 2012, 58: 25–33.
- [8] JIANG M, WANG Q, JIN X, et al. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay [J]. J Hazard Mater, 2010, 170: 332–339.
- [9] ECHEVERRIA J C, ZARRANZ I, ESTELLA J, et al. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of lead on illite [J]. Appl Clay Sci, 2005.30: 103–115.
- [10] GUERRA D J L, SILVA R A R. Kinetic and thermodynamic studies of Brazilian illite-kaolinite in natural and intercalated forms as adsorbents to removal of Zn²⁺ from aqueous solutions [J]. J Taiwan Inst Chem Eng, 2014, 45: 268–274.
- [11] REYNOLD R C. X-ray diffraction studies of illite/smectite from rock<1 um randomly oriented powders, and <1um originated poder aggregates: the absence of laboratory-induced artifacts [J]. Clay Clay Miner, 1992, 40(4): 387–396.
- [12] VELDE B, BRUSEW A M. Composition variation in component

layers in natural illite/smeotite[J]. Clay Miner, 1986, 34: 651-657.

- [13] 雷新荣,刘惠芳,陆琦. 沉积地层中伊蒙混层黏土矿物的晶体结构 晶体化学研究[J]. 沉积学报, 1997, 15: 98–103.
 LEI Rongxin, LIU Huifang, LU Qi, et al. Acta Sedimentol sin(in Chinese), 1997, 15: 98–103.
- [14] MIROSLAC H, NORBENRT C, VLADIMIR S. Rare-earth elemetal systematics of mixes-layered illite-smectite from sedimentary and hydrothermal environments of the western Carpathians (Slovakia) [J]. Chem Geol, 2008, 249: 167–190.
- [15] REYNOLDS R C Jr, HOWER J. The nature of interlayering in mixed-layer illite- montmorillonites[J]. Clay Clay Miner, 1970, 18: 25–36.
- [16] SARI A, TUZEN M. Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite [J]. Micropor Mesopor Mater, 2013, 170: 155–163.
- [17] OZDES D, DULAN C, SENTURK H B. Adsorptive removal of Cd(II) and Pb (II) from aqueous solutions by using Turkey illite clay[J]. J Environ Manage, 2011, 92: 3082–3090.
- [18] BHATTACHARYYA K G., GUPTA S S. Pb(II) uptake by kaolinite and montmorillonite in aqueous medium: influence of acid activation of the clays [J]. Colloid Surf A, 2006, 277: 191–200.
- [19] SARI A, TUZEN M. Cd(II) adsorption from aqueous solution by raw and modified kaolinite [J]. Appl Clay Sci, 2014, 88/89: 63–72.
- [20] SMITH J M, VAN NESS H C. Introduction to Chemical Engineering Thermodynamics, 4th ed [M]. USA: McGraw-Hill, 1987.
- [21] NJOKU V O, AZHARUL ISLAM M, ASIF M, et al. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H₃PO₄-activated langsat empty fruit bunch [J]. J Environ Manage, 2015, 154: 138–144.
- [22] JIANG M, WANG Q, JIN X, et al. Removal of Pb(II) from aqueous solution using modified and unmodified kaolinite clay [J]. J Hazard Mater, 2010, 170: 332–339.
- [23] DAWODU F A, AKPOMIE K G. Simultaneous adsorption of Ni(II) and Mn(II) ions from aqueous solution unto a Nigerian kaolinite [J]. J Mater Res Technol, 2014, 3(2): 129–141.