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Recent Development on Understanding Cement Hydration Mechanism and Effect of Chemical
Admixtures on Cement Hydration
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Abstract: Cement hydration is a key process to determine most properties of cementitious materials. The deep understanding on
cement hydration can be thus favorable for the improvement of the overall properties of cementitious material, providing solutions to
the technical problems in concrete applications. As the extensive application of organic admixtures in concrete and mortar, the
reaction during cement hydration changes from cement—water interaction to cement—organic chemicals—water interaction. The
concept of “organic cement chemistry” was proposed. Recent development on cement hydration mechanism at different stages was
reviewed. The effect of organic admixtures on cement hydration were discussed. It is indicated that the adsorption of polymer on the
surface of cement grains and the complexation of polymers with different elements in aqueous phase or cement grains are the key
factors to determine the effect of organic polymer on cement hydration.
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means of X-ray diffraction
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